Robust Gaussian Graphical Model Estimation with Arbitrary Corruption
نویسندگان
چکیده
We study the problem of estimating the highdimensional Gaussian graphical model where the data are arbitrarily corrupted. We propose a robust estimator for the sparse precision matrix in the highdimensional regime. At the core of our method is a robust covariance matrix estimator, which is based on truncated inner product. We establish the statistical guarantee of our estimator on both estimation error and model selection consistency. In particular, we show that provided that the number of corrupted samples n
منابع مشابه
Robust Distributed Source Coding with Arbitrary Number of Encoders and Practical Code Design Technique
The robustness property can be added to DSC system at the expense of reducing performance, i.e., increasing the sum-rate. The aim of designing robust DSC schemes is to trade off between system robustness and compression efficiency. In this paper, after deriving an inner bound on the rate–distortion region for the quadratic Gaussian MDC based RDSC system with two encoders, the structure of...
متن کاملA Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition
Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...
متن کاملSparse Nonparametric Graphical Models
We present some nonparametric methods for graphical modeling. In the discrete case, where the data are binary or drawn from a finite alphabet, Markov random fields are already essentially nonparametric, since the cliques can take only a finite number of values. Continuous data are different. The Gaussian graphical model is the standard parametric model for continuous data, but it makes distribu...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملRobust Gaussian Graphical Modeling with the Trimmed Graphical Lasso
Gaussian Graphical Models (GGMs) are popular tools for studying network structures. However, many modern applications such as gene network discovery and social interactions analysis often involve high-dimensional noisy data with outliers or heavier tails than the Gaussian distribution. In this paper, we propose the Trimmed Graphical Lasso for robust estimation of sparse GGMs. Our method guards ...
متن کامل